
supra

supra ii

COLLABORATORS

TITLE :

supra

ACTION NAME DATE SIGNATURE

WRITTEN BY April 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

supra iii

Contents

1 supra 1

1.1 supra.doc . 1

1.2 AddToolType . 1

1.3 FCopy . 3

1.4 FileType . 4

1.5 FreeNewImg . 5

1.6 MakeNewImg . 5

1.7 MakePath . 7

1.8 ObtPens . 7

1.9 RecDirFree . 9

1.10 RecDirInit . 10

1.11 RecDirNext . 11

1.12 RecDirTags . 14

1.13 RelPens . 15

1.14 Supra Library . 16

supra 1 / 17

Chapter 1

supra

1.1 supra.doc

~---~Supra~library~v1.1 (11. Apr 95) ---~

AddToolType()

~FCopy()~

~FileType()~

~FreeNewImg()~

~MakeNewImg()~

~MakePath()~

~ObtPens()~

~RecDirFree()~

~RecDirInit()~

~RecDirNext()~

~RecDirTags()~

~RelPens()~

1.2 AddToolType

NAME
AddToolType -- Adds or changes a new/existing icon’s tooltype (V10)
(icon)

SYNOPSIS
tool = AddToolType(diskobj, tooltype)

supra 2 / 17

char * = AddToolType(struct DiskObject *, char *);

FUNCTION
This function lets you add a new tooltype to a disk object’s
tooltype list, or change already existing one.
It is a smart routine that makes dealing with tooltypes very
straightforward.

The following is an example table about how a tooltype list gets
changed based on a provided tool:

existing tooltype | provided tooltype | result
--

NOGUI | (NOGUI) | (NOGUI)
(NOGUI) | NOGUI | NOGUI
NOGUI | NOGUI | NOGUI
SIZE=10 | SIZE=15 | SIZE=15
(SIZE=10) | SIZE=15 | SIZE=15
SIZE=10 | (SIZE=15) | (SIZE=15)
[a new one] | DONOTWAIT | DONOTWAIT [added to a list]

INPUTS
diskobj - points to an allocated DiskObject structure (usually

created by GetDiskObject() function).

tooltype - points to a new tooltype string to be added to a
provided tooltype list

RESULT
tool = pointer to a provided tooltype string if succeeds, otherwise
NULL.

EXAMPLES
This example opens a ram:test.info icon and asks a user to enter
tooltypes to be added (until user enters ’end’).

#include <libraries/supra.h>
#include <clib/exec_protos.h>
#include <clib/dos_protos.h>
#include <clib/icon_protos.h>
#include <stdio.h>
#include <string.h>

#define filename "ram:test"

struct Library *IconBase = NULL;

struct DiskObject *diskobj;

char icon[50];

main()
{

key = NULL;

supra 3 / 17

if (IntuitionBase = OpenLibrary("intuition.library",0)) {
if (IconBase = OpenLibrary("icon.library",0)) {

if (diskobj = GetDiskObject(filename)) {
do {

gets(icon);
if (strcmp(icon, "end") == 0) break;
AddToolType(diskobj, icon);

} while (TRUE);

PutDiskObject(filename, diskobj);
FreeDiskObject(diskobj);
FreeRemember(&key, TRUE);

}
}

}

if (IconBase) CloseLibrary(IconBase);
if (IntuitionBase) CloseLibrary(IntuitionBase);

}

NOTES
All memory allocations used by AddToolType() will be stored in
FreeList structure that MUST be allocated right after the provided
DiskObject structure. If you called your DiskObject by GetDiskObject()
or GetDiskObjectNew() then FreeList is automaticly appended.
All allocated memory is freed when you call FreeDiskObject().

This function requires icon.library to be opened.

1.3 FCopy

NAME
FCopy -- copies source file to destination file (V10)
(dos V36)

SYNOPSIS
error = FCopy(source, dest, buffer)

UBYTE = FCopy(char *, char *, LONG);

FUNCTION
This function works very similar to C:Copy program. It copies
a source file to a destination file.

INPUTS
source - pointer to a source file name (with a relative or

absolute path)
dest - pointer to a destination file name
buffer - maximum size of a buffer (in bytes) to be

allocated for copying. If this buffer is 0, FCopy()
will try to allocate buffer a size of a source file,
or the largest memory block available. (this is the
fastest way).

supra 4 / 17

RESULT
error - zero if no error. Function may return one of the
following error definitions:

FC_ERR_EXIST - Source file does not exist
FC_ERR_EXAM - Error during examination of a source file
FC_ERR_MEM - Not enough memory availabe
FC_ERR_OPEN - Source file could not be oppened
FC_ERR_READ - Error while reading a source file
FC_ERR_DIR - Source file path is a directory
FC_ERR_DEST - Destination file could not be created
FC_ERR_WRITE - Error while writing to a destination file

EXAMPLE

/* This example will copy a file c:dir to ram: with a new name

* list.

*/

UBYTE err;

if ((err = FCopy("C:Dir", "ram:list", 0)) == 0) {

no errors...

} else {
printf("Error: %d\n", err); /* Error occured during FCopy()

*/

}

NOTES
If an error occurs then a destination file will not be deleted
if it has already been partly copied.

1.4 FileType

NAME
FileType -- Examines if a file is a directory or a file (V10)

SYNOPSIS
type = FileType(filename)

LONG = FileType(char *);

FUNCTION
Will use dos.library’s Examine() function to determine
whether a specified file(path) exists, and if it is a file
or a directory.

INPUTS
filename - pointer to a filename string

RESULT
returns 0 if specified file/path does not exist. If < 0, then

supra 5 / 17

it is a plain file. If > 0 a directory.
This function actually returns fib_DirEntryType (from
struct FileInfoBlock).

EXAMPLE

type = FileType("SYS:System");

type will be > 0, which means that "SYS:System" is a dir.

1.5 FreeNewImg

NAME
FreeNewImg -- frees memory allocated by

MakeNewImg()
(V10)

SYNOPSIS
FreeNewImg(newImage)

void FreeNewImg(struct Image *);

FUNCTION
You must free a new created image with this function, when
it is no longer needed.

SEE ALSO

MakeNewImg()

1.6 MakeNewImg

NAME
MakeNewImg -- Remap an image to any new colours (V10)

SYNOPSIS
newImage = MakeNewImg(oldImage, palette)

struct Image * = MakeNewImg(struct Image *, ULONG *);

FUNCTION
This function creates a new clone image of a provided
image, and it remaps the new image according to a provided
pen colour list.
This is very useful when you need your image to use
specific colours anywhere in the available palette.
(e.g. you obtained some free pens from a palette, and
you want your image to be shown with those pens).
It is possible to modify an image’s pens with PlanePick and
PlaneOnOff fields (see Image structure), but this has a major
limitation: most colour combinations are not possible to get.

supra 6 / 17

If your image has four colours (0,1,2,3), and you want to
remap these to (0,16,4,7), you simply call this function,
providing it with the image and a new colour map, and a
new image will be created for you.

INPUTS
oldImage - pointer to an Image structure to be remapped
palette - pointer to a list of new pens

A pens list should contain the exact number of pens as
an old image uses. (2 if image’s depth is 1, 4 if image’s
depth is 2, etc.). An image’s colour 0 will be remapped to the
first pen on the list, image’s colour 1 will be remapped to
the second pen on the list and so on.

RESULT
newImage - pointer to a newly initialized remapped old image’s

clone. If there is not enough memory, newImage will
be NULL.

IMPORTANT: If a new image was created you have to call

FreeNewImg()
to free the allocated memory, when you no longer

need to use it!

EXAMPLE

We have a depth 2 image (4 colours), and we want to use pens
0,16,4,7 instead of 0,1,2,3:

struct Image OldImage = {
.... /* This is a data of our original image */

struct Image *NewImage;
ULONG pal[] = {0, 16, 4, 7}; /* The new pen list */

if (NewImage = MakeNewImg(&OldImage, &pal[0])) {
DrawImage(rp, NewImage);
FreeNewImg(NewImage); /* We will no longer use it */

}

NOTE
A new image’s depth will change to a depth that can hold
the largest pen number from a pens list. It does not have
any smart routine to check if the depth can be optimized
down, by altering PlanePick and PlaneOnOff, yet.
Bear in mind that if you provide a pen 255, then a new image’s
depth will be at least 8.

You MUST free a new image with
FreeNewImg()
when it’s no longer

needed!

This function can take much time when remapping larger images

supra 7 / 17

with more depths.

BUGS
None found.

SEE ALSO

FreeNewImg()

1.7 MakePath

NAME
MakePath -- Creates all new directories in a path (V10)

SYNOPSIS
suc = MakePath(path)

BOOL = MakePath(char *);

FUNCTION
This function creates a whole specified path of directories.
It works similar to CreateDir() except that it can create
more subdirs at once. User does not have to care if all
sub dirs in a specified path already exist or not.

INPUTS
path - pointer to a path string to create. A path can be
relative to a current dir or absolute.

RESULT
suc - TRUE if succeeds (path was created). FALSE if a path
could not be created.

EXAMPLE

suc = MakePath("RAM:way/to/many/dirs");

The above function will try to make all non-existing dirs
in a path RAM:way/to/many/dirs.

SEE ALSO
CreateDir()

1.8 ObtPens

NAME
ObtPens -- Obtain best pens from a list of colors (V10)
(gfx V39)

SYNOPSIS
number = ObtPens(cm, PalTable, PensTable, TagItem)

supra 8 / 17

ULONG = ObtPens(struct ColorMap *, ULONG *, ULONG *,
struct TagItem *);

FUNCTION
This function calls ObtainBestPen() on a list of color
entries, and puts results into a new pens list.

It will attempt to find colors in your viewport closest to
the provided colors list (PalTable).
This is usefull when you want to use an image with more
specific colors on a public screen with a sharable palette.

INPUTS
cm = colormap
PalTable - list of RGB entries for each color you want to use.

The format of this table is the same as for
LoadRGB32():

1 Word with the number of colors to obtain
1 Word with the first color to be obtained
3 longwords representing a left justified 32 bit RGB

triplet
The list is terminated by a count value of 0.

examples:
ULONG PalTable[]={2l<<16+1,0,0,0, 0xffffffff,0,0, 0};

two entries (black, red); obtains only red one

PensTable - list of pen numbers on your viewport, obtained by
this function. First entry in PensTable will

represent
the first color in PalTable, and so on.
NOTE that entries in PensTable with count number

lower
than the first color to be obtained (provided in
PalTable) will be unaffected!

TagItem - this tagitem will be passed to ObtainBestPen()
function,

that is called within ObtPens(). Please see
ObtainBestPen()

in order to decide what kind of precision for
obtaining

colors you will need. If this is NULL, PRECISION_IMAGE
will

be used.

RESULT
number = number of obtained colours (always the same as the

first
Word in PalTable), or 0 if failed. If it succeeds you must call

RelPens()
to free obtained colors.

supra 9 / 17

EXAMPLES

The following example will obtain red, green and blue colours in
a

viewport, and will put obtained pens into pens[] table. pens[0]
will

be untouched (will remain the same colour as viewport’s
background).

ULONG pal[((4<<16)+1, /* 4 entries, starting with the second one

*/
0, 0, 0, /* black - will ignore this one */
0xffffffff, 0, 0, /* red */
0, 0xffffffff, 0, /* green */
0, 0, 0xffffffff, /* blue */
0};

ULONG pens[4];

ObtPens(cm, pal, pens, NULL);

SetAPen(rp, pens[1]); /* Set the primary pen to red */
Text(rp, "I’m red!", 8);

NOTES
You MUST call

RelPens()
to free all obtained colors if ObtPens()

have succeeded, but you must not call it if ObtPens() returns 0.
You MUST open graphics library (V39 or higher) before calling

this
function.

SEE ALSO

RelPens()
, ObtainBestPen(), LoadRGB32()

1.9 RecDirFree

NAME
RecDirFree -- Unlocks all locked paths (V10)
(dos V36)

SYNOPSIS
void RecDirFree(RecDirInfo)

void RecDirFree(struct RecDirInfo *);

FUNCTION
This function is called internally when error occurs in

RecDirNext()

supra 10 / 17

, so you don’t have to call it then!
You can only call it when you no longer want to use

RecDirNext()
,

before it finishes the scanning process.
You DO NOT have to call RecDirFree() when you get any error,
even DN_ERR_END (scanning process complete)!

INPUTS
RecDirInfo - pointer to struct RecDirInfo which has been

called with
RecDirInit()

RESULT
none

SEE ALSO

RecDirInit()
,
RecDirNext()
, RecDirNextTagList()

1.10 RecDirInit

NAME
RecDirInit -- Initializes recursive files scanning process (V10)
(dos V36)

SYNOPSIS
error = RecDirInit(RecDirInfo)

UBYTE = RecDirInit(struct RecDirInfo *)

FUNCTION
This function is required to start scanning files through entire
or partial directory tree. It locks a directory path provided in
RecDirInfo structure, then files can be examined by calling

RecDirNext()
function. Please see

RecDirNext()
for more

explanation on how this is useful.
You should initialize RecDirInfo by yourself, and you MUST set
rdi_Path, rdi_Num, and rdi_Pattern.

INPUTS
RecDirInfo - pointer to RecDirInfo structure, which should be
allocated and initialized before RecDirInit() is called.
You must set its rdi_Path field to starting directory path
you want to scan.

Set rdi_Num for maximum number of directories you wish to scan

supra 11 / 17

into. If you set rdi_Num to 1 it will only scan one level (that
rdi_Path points to). If you set rdi_Num to -1 it will scan
unlimited number of subdirectories deep.

If rdi_Pattern field is non-NULL and points to a string then
calling RecDirNext will only return files that match the
pattern string. NOTE that rdi_Pattern should point to a string
which has been parsed with ParsePattern().

RESULT
error - 0 if no error, otherwise returns one of the following
errors (also see libraries/supra.h):

RDI_ERR_FILE - Path provided in rdi_Path points to a file
not directory.

RDI_ERR_NONEXIST - Path provided in rdi_Path does not exist.
RDI_ERR_MEM - not enough memory to execute RecDirInit().

EXAMPLE
Please see an example in

RecDirNext()
function.

NOTES
IMPORTANT: You MUST open dos.library before calling

RecDirInit()!
rdi_Path is a path relative to a current path your program uses.
That means you can set rdi_Path to "" to scan from current
directory, or "/" to scan parent directory.

BUGS
None found yet.

SEE ALSO

RecDirFree()
,
RecDirNext()
, libraries/supra.h

1.11 RecDirNext

NAME
RecDirNext -- Gets information about the next file (V10)
(dos V36)

SYNOPSIS
error = RecDirNext(RecDirInfo, RecDirFIB);

UBYTE = RecDirNext(struct RecDirInfo *, struct RecDirFIB *);

FUNCTION
Retrieves information about the next file in a scanning process.
Calling this function will not provide a list of sorted files
niether by ASCII order nor by directory levels. That means

supra 12 / 17

it will scan files as they have been stored on a disk drive.

The main advantage of using this function from using ExNext()
is that you don’t have to program a recursive scanning routine
by yourself. You need only to provide lowest directory path,
how deep into subdirectories you want to scan, and which
information about files you need to be provided with.
RecDirNext() will only return files but no directories.
You are also able to select a matching pattern so that only
files which match it will be returned.

Please see
RecDirInit()
for more info.

INPUTS
RecDirInfo - pointer to RecDirInfo structure. You MUST call

RecDirInit()
, providing it with this structure, before calling

any RecDirNext() function.

RecDirFIB - pointer to RecDirFIB structure which should be
previousely allocated. You only set those fields in the
structure that you want to have information about. Any field
should point to a variable into which information will be

stored.
Check "struct RecDirFIB" to see what each field mean.
All field in RecDirFIB structure that are set to NULL will be
ignored.

RESULT
error - zero if no error. Otherwise one of the following:

DN_ERR_END - scanning is completed. You should not call
any RecDirNext() again.

DN_ERR_EXAMINE - Failure while examining a file.
DN_ERR_MEM - not enough memory available to complete

the operation.
IF any error will be resulted, RecDirFree will be called
internally.

EXAMPLE
This example will scan through the entire HD0: disk device, and
will print for each file: its dir path, its name, its size.

#include <stdio.h>
#include <stdlib.h>
#include <clib/exec_protos.h>
#include <clib/dos_protos.h>
#include <libraries/supra.h>

struct RecDirFIB rdf;
struct RecDirInfo rdi;
char name[30];
char path[100];

supra 13 / 17

LONG size;" link "TEXT_INCLUDE:exec/types.h/Main" 35} size;
LONG err;" link "TEXT_INCLUDE:exec/types.h/Main" 35} err;

struct DosBase *DosBase;

void main()
{

if (DosBase = (struct DosBase *)OpenLibrary("dos.library",0)) {

rdi.rdi_Path = "RAM:"; /* from path "RAM:" */
rdi.rdi_Num = -1; /* Unlimited subdirs deep */
rdi.rdi_Pattern = NULL; /* Don’t match files for pattern */

if (RecDirInit(&rdi) == 0) {
rdf.Path = path; /* We want to get files’ path, name and

size

*/
rdf.Name = name;
rdf.Size = &size;
while ((err = RecDirNext(&rdi, &rdf)) == 0) {

printf("%s (%s) %ld\n", path, name, size);
}

/* Now check if DN_ERR_END or some other unexpected error

*/
switch (err) {

case DN_ERR_END:
printf("Scanning completed\n");
break;

case DN_ERR_EXAMINE:
printf("Error: trouble examining a file\n");
break;

case DN_ERR_MEM:
printf("Error: not enough memory\n");

}
}

CloseLibrary((struct Library *)DosBase);
} else printf("Cannot open dos.library\n");

}

NOTES
If you want to end scanning earlier you have to call

RecDirFree()!

BUGS
none found

SEE ALSO

RecDirInit()
,
RecDirTags()
,
RecDirFree()
, libraries/supra.h

supra 14 / 17

1.12 RecDirTags

NAME
RecDirNextTagList -- Gets information about next file (V10)
(dos V36)

SYNOPSIS
error = RecDirNextTagList(RecDirInfo, RecDirFIB, TagItems)

UBYTE = RecDirNextTagList(struct RecDirInfo *, struct RecDirFIB

*,
struct TagItem *);

error = RecDirNextTags(RecDirInfo, RecDirFIB, tag1, ...)

UBYTE = RecDirNextTags(struct RecDirInfo *, struct RecDirFIB *,
ULONG tag1, ...);*

FUNCTION
This function does the same as

RecDirNext()
but it provides

a TagList extension. Any additional tags will override initial
settings in RecDirFIB structure.

INPUTS
RecDirInfo - pointer to RecDirInfo structure which has been

called with
RecDirInit()

RecDirFIB - pointer to initialized and set RecDirFIB ←↩
structure,

or NULL.
You can get files’ information either by setting
variables to this structure before calling
RecDirNextTagList(), or by providing TagItems you
want.
NOTE: If you provide any TagItem then RecDirFIB

will
be changed (if it’s non-NULL)!

Tags - The following tags are available:

RD_NAME - File name will be provided. ti_Data should carry
a pointer to a string buffer (char *)

RD_PATH - Directory path where scanned file is.
RD_FULL - Full directory path + file name
RD_SIZE - File lenght in bytes. ti_Data must have a pointer

to
a LONG number (LONG *).

RD_FLAGS - File’s protection flags. ti_Data must have a
pointer

supra 15 / 17

to LONG.
RD_COMMENT - File’s comment note. ti_Data carries a pointer

to
a string buffer.

RD_DATE - File’s DateStamp structure. Function will copy the
entire DateStamp structure into struct DateStamp
provided in ti_Data field that points to it.

RD_BLOCKS - File size in blocks. ti_Data should have a
pointer

to LONG
RD_UID - Owner’s UID (not supported with all file systems).

ti_Data should have a pointer to UWORD variable.
RD_GID - Owner’s GID. ti_Data has a pointer to UWORD

variable.
RD_FIB - FileInfoBlock. Function will copy examined file’s

FileInfoBlock to a provided struct FileInfoBlock
via ti_Data (ti_Data has a pointer to an allocated
FileInfoBlock structure).

RESULT
Same as for

RecDirNext()
EXAMPLE

See an example for
RecDirNext()
. You can replace its line

RecDirNext(&rdi, &rdf);

with
RecDirNextTags(&rdi, NULL, RD_PATH, path,

RD_NAME, name,
RD_SIZE, &size,
TAG_DONE);

NOTES
If RecDirFIB is not NULL, and you provide some tags as well then
RecDirFIB will be changed. This may change in the future so
that provided RecDirFIB will not change.

BUGS
none found

SEE ALSO

RecDirNext()
,
RecDirInit()
, libraries/supra.h

1.13 RelPens

NAME
RelPens -- Release a list of pens obtained by ObtPens (V10)
(gfx V39)

supra 16 / 17

SYNOPSIS
RelPens(cm, PalTable, PensTable)

void (struct ColorMap *, ULONG *, ULONG *);

FUNCTION
This function repeats calls to ReleasePen() in order to
release all pens obtained by

ObtPens()
.

INPUTS
cm = colormap
PalTable - the same PalTable called with

ObtPens()
PensTable - the same PensTable called with

ObtPens()
NOTES

Please DO NOT modify PalTable and PensTable between calling

ObtPens()
and RelPens(). This function uses the first long

word from PalTable (describing number of entries and starting
position), and all entries from PensTable (except those entries
that are lower than a starting position).
You MUST open graphics library (V39 or higher) before calling
this function!

SEE ALSO

ObtPens()
, ReleasePen()

1.14 Supra Library

Supra Library

version 1.1 11/Apr/1995

© copyright by Jure Vrhovnik -- all rights reserved

Please report any comments to:

jurev@gea.fer.uni-lj.si

Jure Vrhovnik
Langusova 13
Ljubljana, 61000
Slovenia

supra 17 / 17

REMEMBER:

You have to #include<libraries/supra.h> in your source code when using
any of supra library functions. You have to link your object codes with
lib:supra.lib

FEW HINTS:

You will notice that some functions contain two version numbers by their
names. The one on the right is the actual function version. The one
under a name explains what version and what ROM library you have to open
before calling a function. e.g. (gfx V39) tells you that you have to
open graphics.library version 39 or higher before calling that function.

	supra
	supra.doc
	AddToolType
	FCopy
	FileType
	FreeNewImg
	MakeNewImg
	MakePath
	ObtPens
	RecDirFree
	RecDirInit
	RecDirNext
	RecDirTags
	RelPens
	Supra Library

